Home |
Search |
Today's Posts |
![]() |
|
sci.geo.meteorology (Meteorology) (sci.geo.meteorology) For the discussion of meteorology and related topics. |
Reply |
|
LinkBack | Thread Tools | Display Modes |
#1
![]() |
|||
|
|||
![]()
On Sep 23, 10:12*pm, "! 0 B0 Z N.." wrote:
Global Cooling Impacts Being Felt Now Sep 23 2010 QUOTE: Anna Petherick reporting for Nature.com ( August 27, 2010) recently reported on the brutal northern winter that was quickly followed in the southern hemisphere by a viciously cold winter and Antarctic chills killing millions of aquatic animals in the Amazon. New study by American solar experts identifies a sharp fall in sunspot activity since 2007 that fits the hallmarks of a soon arriving ice age. Solar scientists, not to be confused with climate scientists, study the most important heat engine driving our planet's temperatures-the sun. Matthew Penn and William Livingston, solar astronomers with the National Solar Observatory (NSO) in Tucson, Arizona, have been following a marked decrease in sunspot activity recently. Reputable studies link a prolonged drop in sunspot activity to a cooling epoch or even a potential new ice age as more sunspots correlate with more global warming, while fewer sunspots are proven to match episodes of long-term cooling. Since the formation of the IPCC in 1988 the talk has been about global warming. But 22 years on the evidence has grown to raise fears of a catastrophic climate switch in the opposite direction. We look at the evidence that is raising some very serious questions in the scientific community. Zeeman Splitting Technique Raises Solar Alarm Penn and Livingston used a measuring technique known as Zeeman splitting to study the magnetic strength of sunspots. The technique measures the distance between a pair of infrared spectral lines in a spectrograph from the light emitted by iron atoms in the atmosphere of the sun. After examining 1500 sunspots they found that the average strength of the magnetic field of the sunspots has dropped by almost 40 percent in recent years. The reasons for the decline are unknown, but Penn and Livingston predict only half of the normal sunspots may appear on the surface of the Sun by 2021. Below that strength the formation of sunspots becomes almost impossible. Other Experts Confirm Fears Backing up the claims is Australian Geophysicist, Phil Chapman, a former NASA astronaut. Chapman confirms the historic correlation of sunspots to global temperatures and points to the dearth of sunspots since 2007 as the reason why the world has since cooled by about 0.7C. Writer, Alan Caruba (September 21, 2010) probes the story further after a June 14 article published in the New Scientist by Stuart Clark. Caruba reports that Clark, "raised the question of why and where the sunspots have gone. Noting that they ebb and flow in cycles lasting about eleven years, Stuart said, "But for the last two years, the sunspots have mostly been missing. Their absence, the most prolonged in nearly 100 years, has taken even seasoned sun watchers by surprise." Return to another Little Ice Age or Worse? The last time sunspots disappeared altogether, during the Maunder Minimum (about 1645 to 1715), our planet descended into a lengthy period of cooling known as the Little Ice Age. The last major ice age, known as the Younger Dryas happened 12,000 years ago. That sudden event plunged temperatures in the North Atlantic region to about 5°C colder with a 1000-year duration. Global Cooling Impacts Being Felt Now Today Californians just had the coldest summer in decades. Last year in the northern hemisphere, Britain suffered one of the worst winters in 100 years. While in the US the National Weather Service (NWS) reported that the bitterly cold winter broke numerous temperature and snow extent records with the 4th coldest February on record. New York and much of the US Northeast was pumelled by record snow falls that deposited about 60cm (2 feet) of snow in NYC alone. While in New Zealand tens of thousands of lambs have perished in bitter winter snows. Worst Snow Falls Since 1970's Rutgers University Global Snow Lab also confirms that the 2010 Northern Hemisphere winter snow extent was the second highest on record, at 52,166,840 km2 and second only to February, 1978 which was slightly higher at 53,647,305 km2. Are we now seeing the specter of a return to the fears of the 1970s, when climatologists warned of 'The Cooling World' (Newsweek, April 28, 1975)? Anna Petherick reporting for Nature.com ( August 27, 2010) recently reported on the brutal northern winter that was quickly followed in the southern hemisphere by a viciously cold winter and Antarctic chills killing millions of aquatic animals in the Amazon. So will these latest changes in the sun's behavior be a harbinger of more cold to come? References: Edwards L., 'Sunspots could soon disappear for decades: study,' (September 15, 2010), Physorg.com (accessed: September 21, 2010) Sato, R., 'Is a "Little Ice Age" Imminent? -Maverick Scientists Say "Yes"' (August 26, 2008), dailygalaxy.com (accessed: September 21, 2010) Caruba A., 'Casandra Says it Will Get very Cold,' ( September 20, 2010), Canadafreepress.com (accessed: September 21, 2010) Penn M., and Livingston W., 'Long-term Evolution of Sunspot Magnetic Fields,' arXiv:1009.0784v1 [astro-ph.SR] Felix R., 'Little Ice Age Cometh Sunspots could disappear for decades,' iceagenow.com (accessed: September, 21, 2010) Petherick A., 'Cold empties Bolivian rivers of fish,' (August 27, 2010), Nature.com ( accessed: September 21, 2010). http://www.suite101.com/content/evid...tists-raise-fe... Warmest Regards Bonz0 "It is a remarkable fact that despite the worldwide expenditure of perhaps US$50 billion since 1990, and the efforts of tens of thousands of scientists worldwide, no human climate signal has yet been detected that is distinct from natural variation." Bob Carter, Research Professor of Geology, James Cook University, Townsville "It does not matter who you are, or how smart you are, or what title you have, or how many of you there are, and certainly not how many papers your side has published, if your prediction is wrong then your hypothesis is wrong. Period." Professor Richard Feynman, Nobel Laureate in Physics "A core problem is that science has given way to ideology. The scientific method has been dispensed with, or abused, to serve the myth of man-made global warming." "The World Turned Upside Down", Melanie Phillips "Computer models are built in an almost backwards fashion: The goal is to show evidence of AGW, and the "scientists" go to work to produce such a result. When even these models fail to show what advocates want, the data and interpretations are "fudged" to bring about the desired result" "The World Turned Upside Down", Melanie Phillips "Ocean acidification looks suspiciously like a back-up plan by the environmental pressure groups in case the climate fails to warm: another try at condemning fossil fuels!" http://www.rationaloptimist.com/blog...fication-great... Before attacking hypothetical problems, let us first solve the real problems that threaten humanity. One single water pump at an equivalent cost of a couple of solar panels can indeed spare hundreds of Sahel women the daily journey to the spring and spare many infections and lives. Martin De Vlieghere, philosopher "The fact that an opinion has been widely held is no evidence whatever that it is not utterly absurd; indeed in view of the silliness of the majority of mankind, a widespread belief is more likely to be foolish than sensible." Bertrand Russell Precession of the Equinox. SEE http://www.eoearth.org/article/Causes_of_climate_change Variations in the Earth's Orbital Characteristics Figure 2: Modification of the timing of aphelion and perihelion over time (A = today; B = 13,000 years into the future). (Source: PhysicalGeography.net) The Milankovitch theory suggests that normal cyclical variations in three of the Earth's orbital characteristics is probably responsible for some past climatic change. The basic idea behind this theory assumes that over time these three cyclic events vary the amount of solar radiation that is received on the Earth's surface. The first cyclical variation, known as eccentricity, controls the shape of the Earth's orbit around the sun. The orbit gradually changes from being elliptical to being nearly circular and then back to elliptical in a period of about 100,000 years. The greater the eccentricity of the orbit (i.e., the more elliptical it is), the greater the variation in solar energy received at the top of the atmosphere between the Earth's closest (perihelion) and farthest (aphelion) approach to the sun. Currently, the Earth is experiencing a period of low eccentricity. The difference in the Earth's distance from the sun between perihelion and aphelion (which is only about 3%) is responsible for approximately a 7% variation in the amount of solar energy received at the top of the atmosphere. When the difference in this distance is at its maximum (9%), the difference in solar energy received is about 20%. The second cyclical variation results from the fact that as the Earth rotates on its polar axis, it wobbles like a spinning top changing the orbital timing of the equinoxes and solstices (see Figure 2). This effect is known as the precession of the equinox. The precession of the equinox has a cycle of approximately 26,000 years. According to illustration A in Figure 2, the Earth is closer to the sun in January (perihelion) and farther away in July (aphelion) at the present time. Because of precession, the reverse will be true in 13,000 years and the Earth will then be closer to the sun in July (illustration B, Figure 2). This means, of course, that if everything else remains constant, 13,000 years from now seasonal variations in the Northern Hemisphere should be greater than at present (colder winters and warmer summers) because of the closer proximity of the Earth to the sun. The third cyclical variation is related to the changes in the tilt (obliquity) of the Earth's axis of rotation over a 41,000 year period. During the 41,000 year cycle the tilt can deviate from approximately 22.5 to 24.5°. At the present time, the tilt of the Earth's axis is 23.5°. When the tilt is small there is less climatic variation between the summer and winter seasons in the middle and high latitudes. Winters tend to be milder and summers cooler. Warmer winters allow for more snow to fall in the high-latitude regions. When the atmosphere is warmer it has a greater ability to hold water vapor and therefore more snow is produced at areas of frontal or orographic uplift. Cooler summers cause snow and ice to accumulate on the Earth's surface because less of this frozen water is melted. Thus, the net effect of a smaller tilt would be more extensive formation of glaciers in the polar latitudes. Periods of a larger tilt result in greater seasonal climatic variation in the middle and high latitudes. At these times, winters tend to be colder and summers warmer. Colder winters produce less snow because of lower atmospheric temperatures. As a result, less snow and ice accumulates on the ground surface. Moreover, the warmer summers produced by the larger tilt provide additional energy to melt and evaporate the snow that fell and accumulated during the winter months. In conclusion, glaciers in the polar regions should be generally receding, with other contributing factors constant, during this part of the obliquity cycle. Computer models and historical evidence suggest that the Milankovitch cycles exert their greatest cooling and warming influence when the troughs and peaks of all three cycles coincide with each other. Atmospheric Carbon Dioxide Variations Figure 3: The following graph illustrates the rise in atmospheric carbon dioxide from 1744 to 2005. Note that the increase in carbon dioxide's concentration in the atmosphere has been exponential during the period examined. An extrapolation into the immediate future would suggest continued increases. (Source: PhysicalGeography.net) Studies of long-term climate change have discovered a connection between the concentration of carbon dioxide in the atmosphere and mean global temperature. Carbon dioxide is one of the more important gases responsible for the greenhouse effect. Certain atmospheric gases, like carbon dioxide, water vapor and methane, are able to alter the energy balance of the Earth by being able to absorb longwave radiation emitted from the Earth's surface. The net result of this process and the re-emission of longwave back to the Earth's surface increases the quantity of heat energy in the Earth's climatic system. Without the greenhouse effect, the average global temperature of the Earth would be a cold -18° Celsius rather than the present 15° Celsius. Researchers of the 1970s CLIMAP project found strong evidence in deep- ocean sediments of variations in the Earth's global temperature during the past several hundred thousand years of the Earth's history. Other subsequent studies have confirmed these findings and have discovered that these temperature variations were closely correlated to the concentration of carbon dioxide in the atmosphere and variations in solar radiation received by the planet as controlled by the Milankovitch cycles. Measurements indicated that atmospheric carbon dioxide levels were about 30% lower during colder glacial periods. It was also theorized that the oceans were a major store of carbon dioxide and that they controlled the movement of this gas to and from the atmosphere. The amount of carbon dioxide that can be held in oceans is a function of temperature. Carbon dioxide is released from the oceans when global temperatures become warmer and diffuses into the ocean when temperatures are cooler. Initial changes in global temperature were triggered by changes in received solar radiation by the Earth through the Milankovitch cycles. The increase in carbon dioxide then amplified the global warming by enhancing the greenhouse effect. Over the past three centuries, the concentration of carbon dioxide has been increasing in the Earth's atmosphere because of human influences (Figure 3). Human activities like the combustion of fossil fuels, conversion of natural prairie to farmland, and deforestation have caused the release of carbon dioxide into the atmosphere. From the early 1700s, carbon dioxide has increased from 280 parts per million to 380 parts per million in 2005. Many scientists believe that higher concentrations of carbon dioxide in the atmosphere will enhance the greenhouse effect making the planet warmer. Scientists believe we are already experiencing global warming due to an enhancement of the greenhouse effect. Most computer climate models suggest that the globe will warm up by 1.5 - 4.5° Celsius if carbon dioxide reaches the predicted level of 600 parts per million by the year 2050. Volcanic Eruptions For many years, climatologists have noticed a connection between large explosive volcanic eruptions and short-term climatic change (Figure 4). For example, one of the coldest years in the last two centuries occurred the year following the Tambora volcanic eruption in 1815. Accounts of very cold weather were documented in the year following this eruption in a number of regions across the planet. Several other major volcanic events also show a pattern of cooler global temperatures lasting 1 to 3 years after their eruption. Figure 4: Explosive volcanic eruptions have been shown to have a short- term cooling effect on the atmosphere if they eject large quantities of sulfur dioxide into the stratosphere. This image shows the eruption of Mount St. Helens on May 18, 1980 which had a local effect on climate because of ash reducing the reception of solar radiation on the Earth's surface. Mount St. Helens had very minimal global effect on the climate because the eruption occurred at an oblique angle putting little sulfur dioxide into the stratosphere. (Source: U.S. Geological Survey, photograph by Austin Post). Figure 5: Ash column generated by the eruption of Mount Pinatubo on June 12, 1991. The strongest eruption of Mount Pinatubo occurred three days later on June 15, 1991. (Source: U.S. Geological Survey). Initially, scientists thought that the dust emitted into the atmosphere from large volcanic eruptions was responsible for the cooling by partially blocking the transmission of solar radiation to the Earth's surface. However, measurements indicate that most of the dust thrown in the atmosphere returned to the Earth's surface within six months. Recent stratospheric data suggests that large explosive volcanic eruptions also eject large quantities of sulfur dioxide gas which remains in the atmosphere for as long as three years. Atmospheric chemists have determined that the ejected sulfur dioxide gas reacts with water vapor commonly found in the stratosphere to form a dense optically bright haze layer that reduces the atmospheric transmission of some of the sun's incoming radiation. In the last century, two significant climate-modifying eruptions have occurred. El Chichon in Mexico erupted in April of 1982, and Mount Pinatubo went off in the Philippines during June, 1991 (Figure 5). Of these two volcanic events, Mount Pinatubo had a greater effect on the Earth's climate and ejected about 20 million tons of sulfur dioxide into the stratosphere (Figure 6). Researchers believe that the Pinatubo eruption was primarily responsible for the 0.8 degree Celsius drop in global average air temperature in 1992. The global climatic effects of the eruption of Mount Pinatubo are believed to have peaked in late 1993. Satellite data confirmed the connection between the Mount Pinatubo eruption and the global temperature decrease in 1992 and 1993. The satellite data indicated that the sulfur dioxide plume from the eruption caused a several percent increase in the amount of sunlight reflected by the Earth's atmosphere back to space causing the surface of the planet to cool. Figure 6: The following satellite image shows the distribution of Mount Pinatubo's sulfur dioxide and dust aerosol plume (red and yellow areas) between June 14 and July 26, 1991. Approximately 45 days after the eruption, the aerosol plume completely circled the Earth around the equator forming a band 20 to 50° of latitude wide. Areas outside this band were clear of volcanic aerosols. Within a year, the sulfur dioxide continued to migrate towards the North and South Pole until it covered the entire Earth because of the dominant poleward flow of stratospheric winds (stratospheric winds circulate from the equator to the polar vortices at the North and South Poles). These observed patterns of aerosol movement suggest that tropical explosive volcanic eruptions probably have the greatest effect on the Earth's climate. Diffusion of aerosols by stratospheric winds from a tropical source results in the greatest latitudinal coverage of the sulfur dioxide across both the Northern and Southern Hemispheres. (Source: SAGE II Satellite Project - NASA) Variations in Solar Output Until recently, many scientists thought that the sun's output of radiation only varied by a fraction of a percent over many years. However, measurements made by satellites equipped with radiometers in the 1980s and 1990s suggested that the sun's energy output may be more variable than was once thought (Figure 7). Measurements made during the early 1980s showed a decrease of 0.1 percent in the total amount of solar energy reaching the Earth over just an 18 month time period. If this trend were to extend over several decades, it could influence global climate. Numerical climatic models predict that a change in solar output of only 1 percent per century would alter the Earth's average temperature by between 0.5 to 1.0° Celsius. Figure 7: Image of the sun taken by the Solar and Heliospheric Observatory (SOHO) satellite on 14 September 1997. The sun is essentially the only source of energy for running the Earth's climate. Thus, any change in its output will result in changes in the reception of insolation and the generation of heat energy which drives the climate system. (Source: Solar and Heliospheric Observatory) Scientists have long tried to also link sunspots to climatic change. Sunspots are huge magnetic storms that are seen as dark (cooler) areas on the sun's surface. The number and size of sunspots show cyclical patterns, reaching a maximum about every 11, 90, and 180 years. The decrease in solar energy observed in the early 1980s correspond to a period of maximum sunspot activity based on the 11 year cycle. In addition, measurements made with a solar telescope from 1976 to 1980 showed that during this period, as the number and size of sunspots increased, the sun's surface cooled by about 6° Celsius. Apparently, the sunspots prevented some of the sun's energy from leaving its surface. However, these findings tend to contradict observations made on longer times scales. Observations of the sun during the middle of the Little Ice Age (1650 to 1750) indicated that very little sunspot activity was occurring on the sun's surface. The Little Ice Age was a time of a much cooler global climate and some scientists correlate this occurrence with a reduction in solar activity over a period of 90 or 180 years. Measurements have shown that these 90 and 180 year cycles influence the amplitude of the 11 year sunspot cycle. It is hypothesized that during times of low amplitude, like the Maunder Minimum, the sun's output of radiation is reduced. Observations by astronomers during this period (1645 to 1715) noticed very little sunspot activity occurring on the sun. During periods of maximum sunspot activity, the sun's magnetic field is strong. When sunspot activity is low, the sun's magnetic field weakens. The magnetic field of the sun also reverses every 22 years, during a sunspot minimum. Some scientists believe that the periodic droughts on the Great Plains of the United States are in someway correlated with this 22 year cycle. Further Reading Mick Kelly, The Causes of Climatic Change, Climatic Research Unit, School of Environmental Sciences, University of East Anglia P. Foukal, C. Frohlich, H. Spruit, and T.M.L. Wigley, Variations in Solar Luminosity and Their Effect on the Earth's Climate, September 14, 2006 Nature, 443: 161-166 Peter A. Stott, S.F.B. Tett, G.S. Jones, M.R. Allen, J.F.B. Mitchell, and G.J. Jenkins, External Control of 20th Century Temperature by Natural and Anthropogenic Forcings, December 13, 2000 Science 2133-2137 PhysicalGeography.net Sydney Levitus, John I. Antonov, Julian Wang, Thomas L. Delworth, Keith W. Dixon, and Anthony J. Broccoli, Anthropogenic Warming of Earth's Climate System, April 13, 2001 Science 292: 267-270 Thomas J. Crowley, Causes of Climate Change Over the Past 1000 Years, July 14, 2000 Science, 289: 270-277 Thomas R. Karl and Kevin E. Trenberth, Modern Global Climate Change, December 5, 2003 Science, 302: 1719-1723 The Author Table of Contents 1 Research Interests 2 Current Research Projects 3 Scholarship 4 Education 5 Teaching Interests 6 Contact Information if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); } Research Interests I have general research interests in the following areas of study: Species interactions in wetland plant communities. Spatial patterns and community structure in vegetation. Climate change and its influence on the distribution of sp http://www.eoearth.org/article/Causes_of_climate_change |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Fwd: GLOBAL COOLING: Decade long ice age predicted as sun'hibernates' | uk.sci.weather (UK Weather) | |||
Extreme Global Cooling Is Imminent. Let's Hope Not | sci.geo.meteorology (Meteorology) | |||
Joe Accepts His WinterForecast was WRONG and fears major cooling | uk.sci.weather (UK Weather) | |||
What Real Scientists Do: Global Warming Science vs. Global Whining Scientists | sci.geo.meteorology (Meteorology) | |||
Humans raise risk of Europe heatwaves -scientists | uk.sci.weather (UK Weather) |